The carbon sink of secondary and degraded humid tropical forests

0
55
The carbon sink of secondary and degraded humid tropical forests
The carbon sink of secondary and degraded humid tropical forests


  • Qie, L. et al. Writer Correction: Lengthy-term carbon sink in Borneo’s forests halted by drought and weak to edge results. Nat. Commun. 9, 342 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

    <script type=”text/javascript”> atOptions = { ‘key’ : ‘015c8be4e71a4865c4e9bcc7727c80de’, ‘format’ : ‘iframe’, ‘height’ : 60, ‘width’ : 468, ‘params’ : {} }; document.write(‘<scr’ + ‘ipt type=”text/javascript” src=”//animosityknockedgorgeous.com/015c8be4e71a4865c4e9bcc7727c80de/invoke.js”></scr’ + ‘ipt>’); </script><\/p>

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gatti, L. V. et al. Amazonia as a carbon supply linked to deforestation and local weather change. Nature 595, 388–393 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Vancutsem, C. et al. Lengthy-term (1990–2019) monitoring of forest cowl modifications within the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration within the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Santoro, M. & Cartus, O. ESA Biomass Local weather Change Initiative (Biomass_cci): World datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v2. Centre for Environmental Information Evaluation. https://doi.org/10.5285/84403d09cef3485883158f4df2989b0c (2021).

  • COP26, UN Local weather Change Convention UK 2021. Glasgow Leaders’ Declaration on Forests and Land Use. https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/ (2021).

  • Seddon, N. Harnessing the potential of nature-based options for mitigating and adapting to local weather change. Science 376, 1410–1416 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of world forest loss. Science 361, 1108–1111 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Harris, N. L. et al. World maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article 
    ADS 

    Google Scholar
     

  • United Nations Framework Conference on Local weather Change (UNFCCC). World Stocktake. https://unfccc.int/subjects/global-stocktake (2015).

  • Requena Suarez, D. et al. Estimating aboveground web biomass change for tropical and subtropical forests: refinement of IPCC default charges utilizing forest plot knowledge. Glob. Change Biol. 25, 3609–3624 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cook dinner-Patton, S. C. et al. Mapping carbon accumulation potential from world pure forest regrowth. Nature 585, 545–550 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Heinrich, V. H. A. et al. Massive carbon sink potential of secondary forests within the Brazilian Amazon to mitigate local weather change. Nat. Commun. 12, 1785 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Philipson, C. D. et al. Lively restoration accelerates the carbon restoration of human-modified tropical forests. Science 369, 838–841 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rappaport, D. I. et al. Quantifying long-term modifications in carbon shares and forest construction from Amazon forest degradation. Environ. Res. Lett. 13, 065013 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hayward, R. M. et al. Three many years of post-logging tree group restoration in naturally regenerating and actively restored dipterocarp forest in Borneo. For. Ecol. Manag. 488, 119036 (2021).

    Article 

    Google Scholar
     

  • Putz, F. E. et al. Intact forest in selective logging landscapes within the tropics. Entrance. For. Glob. Change 2, 30 (2019).

    Article 

    Google Scholar
     

  • Silva, C. V. J. et al. Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environ. Res. Lett. 15, 114023 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Poorter, L. et al. Moist and dry tropical forests present reverse successional pathways in wooden density however converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dubayah, R. et al. The World Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Distant Sens. 1, 100002 (2020).

    Article 

    Google Scholar
     

  • Sullivan, M. J. P. et al. Lengthy-term thermal sensitivity of earth’s tropical forests. Science 368, 869–874 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Poorter, L. et al. Multidimensional tropical forest restoration. Science 374, 1370–1376 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rozendaal, D. et al. Aboveground forest biomass varies throughout continents, ecological zones and successional levels: refined IPCC default values for tropical and subtropical forests. Environ. Res. Lett. 17, 014047 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Griscom, B., Ellis, P. & Putz, F. E. Carbon emissions efficiency of business logging in East Kalimantan, Indonesia. Glob. Change Biol. 20, 923–937 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).

    Article 

    Google Scholar
     

  • Avitabile, V. et al. An built-in pan-tropical biomass map utilizing a number of reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lloyd, J. & Farquhar, G. D. Results of rising temperatures and [CO2] on the physiology of tropical forest timber. Philos. Trans. R. Soc. B Biol. Sci. 363, 1811–1817 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Bennett, A. C. et al. Resistance of African tropical forests to an excessive local weather anomaly. Proc. Natl Acad. Sci. 118, e2003169118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Change 11, 449–455 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Esquivel-Muelbert, A. et al. A spatial and temporal threat evaluation of the impacts of El Niño on the tropical forest carbon cycle: theoretical framework, eventualities, and implications. Environment 10, 588 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhou, L. et al. Widespread decline of Congo rainforest greenness up to now decade. Nature 508, 86–90 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Saatchi, S. et al. Detecting vulnerability of humid tropical forests to a number of stressors. One Earth 4, 988–1003 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Brando, P. M. et al. Abrupt will increase in Amazonian tree mortality as a consequence of drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ferraz, A. et al. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett. 13, 095001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jucker, T. et al. Topography shapes the construction, composition and performance of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackham, G. V., Webb, E. L. & Corlett, R. T. Pure regeneration in a degraded tropical peatland, Central Kalimantan, Indonesia: implications for forest restoration. For. Ecol. Manag. 324, 8–15 (2014).

    Article 

    Google Scholar
     

  • Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Close to-complete lack of fire-resistant major tropical forest cowl in Sumatra and Kalimantan. Commun. Earth Environ. 1, 65 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Riutta, T. et al. Main and protracted shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests. Glob. Change Biol. 27, 2225–2240 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Midday, M. L. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Maintain. 5, 37–46 (2022).

    Article 

    Google Scholar
     

  • Rosan, T. M. et al. Fragmentation-driven divergent developments in burned space in Amazonia and Cerrado. Entrance. For. Glob. Change 5, 801408 (2022).

    Article 

    Google Scholar
     

  • Poulsen, J. R. et al. Previous development Afrotropical forests essential for sustaining forest carbon. Glob. Ecol. Biogeogr. 29, 1785–1798 (2020).

    Article 

    Google Scholar
     

  • Haenssgen, M. J. et al. Implementation of the COP26 declaration to halt forest loss should safeguard and embrace Indigenous folks. Nat. Ecol. Evol. 6, 235–236 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Maxwell, S. L. et al. Degradation and forgone removals improve the carbon impression of intact forest loss by 626%. Sci. Adv. 5, eaax2546 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Reynolds, G., Payne, J., Sinun, W., Mosigil, G. & Walsh, R. P. D. Adjustments in forest land use and administration in Sabah, Malaysian Borneo, 1990–2010, with a deal with the Danum Valley area. Philos. Trans. R. Soc. B Biol. Sci. 366, 3168–3176 (2011).

    Article 

    Google Scholar
     

  • Boul Lefeuvre, N. et al. The worth of logged tropical forests: a examine of ecosystem providers in Sabah, Borneo. Environ. Sci. Coverage 128, 56–67 (2022).

    Article 

    Google Scholar
     

  • Lennox, G. D. et al. Second charge or a second likelihood? Assessing biomass and biodiversity restoration in regenerating Amazonian forests. Glob. Change Biol. 24, 5680–5694 (2018).

    Article 

    Google Scholar
     

  • Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: a case examine from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).

    Article 

    Google Scholar
     

  • Roe, S. et al. Land-based measures to mitigate local weather change: potential and feasibility by nation. Glob. Change Biol. 27, 6025–6058 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Martin, A. R., Doraisami, M. & Thomas, S. C. World patterns in wooden carbon focus internationally’s timber and forests. Nat. Geosci. 11, 915–920 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • ESRI. ArcGIS Professional Desktop (2.6.0) (2020).

  • Descals, A. et al. Excessive-resolution world map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Information 13, 1211–1231 (2021).

    Article 
    ADS 

    Google Scholar
     

  • R Core Group. R: A Language and Atmosphere for Statistical Computing. http://www.R-project.org/ (R Basis for Statistical Computing, 2008).

  • Richards, F. J. A versatile development operate for empirical use. J. Exp. Bot. 10, 290–301 (1959).

    Article 

    Google Scholar
     

  • Smith, C. C. et al. Secondary forests offset lower than 10% of deforestation-mediated carbon emissions within the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Nunes, S., Oliveira, L.Jr, Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics within the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Information 7, 269 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, Okay. C. TerraClimate, a high-resolution world dataset of month-to-month local weather and climatic water steadiness from 1958–2015. Sci. Information 5, 170191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva Junior, C. H. L, & Campanharo, W. A. Most Cumulative Water Deficit – MCWD: a R language script (v1.1.0). https://doi.org/10.5281/zenodo.2652629 (2019).

  • Funk, C. et al. The local weather hazards infrared precipitation with stations—a brand new environmental file for monitoring extremes. Sci. Information 2, 150066 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nobre, A. D. et al. Peak Above the Nearest Drainage – a hydrologically related new terrain mannequin. J. Hydrol. 404, 13–29 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Almeida, C. A. et al. Excessive spatial decision land use and land cowl mapping of the Brazilian authorized Amazon in 2008 utilizing Landsat-5/TM and MODIS knowledge. Acta Amazon 46, 291–302 (2016).

    Article 

    Google Scholar
     

  • Ploton, P. et al. Spatial validation reveals poor predictive efficiency of large-scale ecological mapping fashions. Nat. Commun. 11, 4540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Haining, R. P. in Worldwide Encyclopedia of the Social & Behavioral Sciences (eds. Smelser, N. J. & Baltes, P. B.) 14822–14827 (Pergamon, 2001).

  • Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of world peatland distribution primarily based on a meta-analysis. Catena 160, 134–140 (2018).

    Article 

    Google Scholar
     

  • Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of world peatland distribution primarily based on a meta-analysis. Analysis Information Leeds Repository https://archive.researchdata.leeds.ac.uk/251/ (2017).

  • Donchyts, G., Winsemius, H., Schellekens, J., Erickson, T. & Gao, H. World 30m top above the closest drainage. Geophys. Res. Abstr. 18, EGU2016-17445-3 (2016).


    Google Scholar
     

  • Souza, C. M.Jr et al. Reconstructing three many years of land use and land cowl modifications in Brazilian biomes with Landsat archive and Earth Engine. Distant Sens. 12, 2735 (2020).

    Article 
    ADS 

    Google Scholar
     

  • World Forest Watch. Managed Forest Concessions. https://www.globalforestwatch.org/ (2020).

  • ThematicMapping. http://thematicmapping.org/downloads/world_borders.php (2009).

  • Heinrich, V. H. A. et al. Information and code from paper: The carbon sink of secondary and degraded humid tropical forests. https://zenodo.org/file/7515854#.Y8kVQEFxeUk (2022).

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here